

DOE HEP Program Perspective HEP/NERSC Workshop November 12, 2009

Amber Boehnlein
Office of High Energy Physics
DOE Office of Science

The Three Frontiers of HEP

- At the Energy Frontier, powerful accelerators are used to create new particles;
- At the Intensity Frontier, intense particle beams and highly sensitive detectors study events that occur rarely in nature; and
- At the Cosmic Frontier, ground and space-based experiments and telescopes offer new insight and information about the nature of dark matter and dark energy, and discover new phenomena.

HEP Program at a Glance

The Office of High Energy Physics is the federal steward of HEP research providing over 90% of federal support to

- Design, construct and operate the research facilities needed to advance our knowledge
- > Support the researchers at universities and laboratories to carry out the research
- Develop advanced technologies and next generation scientific and technical workforce

Five Subprograms

Demographics

Budget Categories	(\$M) FY 2009
Proton Accelerator-Based Physics	402.5
Electron Accelerator-Based Physics	31.0
Non-Accelerator Physics	100.9
Theoretical Physics	64.8
Advanced Technology R&D	196.6
HEP Total	795.7

Research Statistics	FY 2009 estimate
# University Grants	200
# Laboratory Groups	45
# Permanent Ph.D.'s (FTEs)	1,135
# Postdoctoral Assoc (FTEs)	550
# Graduate Students (FTEs)	595
# Ph.D.'s awarded	110

HEP Approach to Computing

- Scientific Mission: Experiments for HEP accelerator and non-accelerator science can be data and compute intensive. Theory is typically compute intensive.
 - We recognize that computing infrastructure and facilities are essential to fulfill our research mission
 - Data storage and compute facilities at national laboratories to support the experimental and theoretical programs
 - BABAR, CDF/DO, Intensity Program
 - LHC Tier 1 facilities for ATLAS (BNL) and CMS(FNAL)
 - Facilities for astrophysics experiments and theory
 - LQCD at BNL, FNAL.
 - Hardware for analysis and other program support at universities and laboratories
 - LHC Tier3
 - PDSF at LBNL
 - Specialized or custom-built software and computing
 - We collaborate with partners in Office of Science and NSF
 - Open Science Grid, LHCNet
 - We rely on High Performance Computing facilities
 - NERSC
 - INCITE

HEP Computing at NERSC

- Five broad categories reflect computing in support of the HEP mission.
 - Accelerator Modeling
 - > Computational Astrophysics
 - > LQCD and other standard model theory calculations
 - > HEP experiment simulations and data analysis
 - > Experimental Astrophysics
- All of these categories are vital to the HEP mission
- Reflected in current HEP NERSC usage
 - > ~35 users
 - > Within these categories, priorities are determined as the programs evolve.
- Allocations and usage will be covered in more detail

This planning exercise is essential: Computing cycles at NERSC has and will continue to enable these vital activities

Computing at the Frontiers

Scientific Discovery Through Advanced Computing

Lattice QCD

- Large scale numerical models to make precise predictions of Standard Model Physics to compare to experimental results
 - Calculations in progress include mixing, decay amplitudes in the B sector
- > Calculation of the masses of strongly interacting particles
- > Partners: NP, ASCR

Computational Astrophysics Consortium

- Modeling the properties of exploding stars and understanding the implications for supernova surveys and dark energy observatories
 - Type 1a supernova, nucleosynthesis, radiation transport, gamma ray burst.
- > Partners: NP, NNSA, ASCR

<u>Community Petascale Project for Accelerator</u> <u>Science and Simulation</u>

- Working to develop tools for accelerator scientists to study the behavior of charged particles traversing accelerating structures.
 - Highly parallel codes for Beam Dynamics, Electomagnetics and Advanced acceleration techniques
 - Full lifecycle from conceptual R&D-> accelerator design -> commissioning and operations
- Partners: NP, BER, ASCR

Summary

- HEP has five areas with long term computing needs at NERSC
 - > Accelerator Modeling
 - Computational Astrophysics
 - > LQCD and other standard model theory calculations
 - > HEP experiment simulations and data analysis
 - > Experimental Astrophysics
- Thanks to NERSC and ASCR for arranging this opportunity to state the needs for HEP computing at NERSC
- Thanks to the participants